

Session 3C: Assoc. Prof. Dr. Alexis M. Fillone

Presentation entitled: Low Carbon Society Policy in Philippines

Biographic Data of Speaker

Alexis M. Fillone Transportation Engineering Division Civil Engineering Department, De La Salle University-Manila 2401 Taft Avenue, Manila, PHILIPPINES E-mail: alex012167@yahoo.com

Dr. Alexis M. Fillone earned his PhD in Urban and Regional Planning from the School of Urban and Regional Planning (SURP), University of the Philippines in 2005. He has a Master of Engineering Degree in Transportation from Asian Institute of Technology, Bangkok, Thailand. He is currently an Associate Professor in Civil Engineering at De La Salle University-Manila. His research interests are in public transportation planning, travel demand modeling, behavioral analysis as well as environmental issues in transportation.

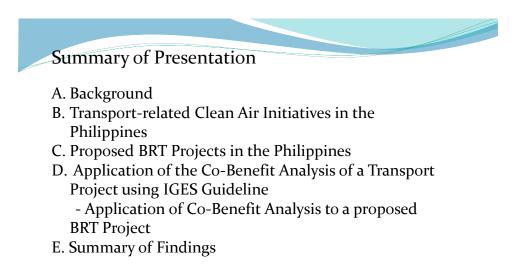
SIAN TRANSPORTATION RESEARCH SOCIETY

CLEAN AIR INITIATIVES IN TRANSPORTATION, THE CASE OF THE PHILIPPINES

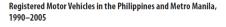
Some of the initiatives being pursued in transportation in the Philippines towards cleaner air are discussed. The national government as well as local governments has been initiating programs and projects in transportation for a cleaner environment.

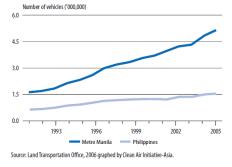
The application of an improved method by the IGES in measuring co-benefits from a proposed transportation project in Metro Manila is also discussed. The measurement of co-benefit has become very important to estimate the acceptability of a transport project from the view point of not only greenhouse gas (GHG) emission reduction but also roadside emission reduction and other effects. The application of this method is presented as applied to the proposed BRT introduction in Metro Manila. In this study, traffic demand was estimated using demand forecasting model based on the Metro Manila Urban Transportation Integration Study (1998) and micro simulation model which was developed to estimate the impact of BRT introduction on Circumferential Road 5 (C-5) which is a ring road in Metro Manila. Based on the estimated demand, benefit from reduction of CO2, NOx, CO, PM were estimated as well as benefit from reduction of total travel time, total operating cost and damage cost by traffic accident.

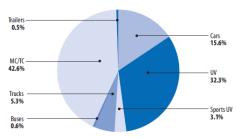
ASIAN TRANSPORTATION RESEARCH SOCIETY


26 – 27 August 2<mark>011</mark> Bangkok, Thailand

CLEAN AIR INITIATIVES IN TRANSPORTATION, THE CASE OF THE PHILIPPINES


By


Alexis M. Fillone Associate Professor De La Salle University-Manila



% Share of Vehicle Types in the Overall Fleet, 2005

 $\label{eq:calar} CAI = Clean Air Initiative; LTO = Land Transportation Office; MC/TC = motorcycle/tricycle; NCR = National Capital Region; UV = utility vehicle; % = percent Source: LTO, 2006 and graph by CAI-Asia.$

5% J 1%

26 – 27 August 2<mark>011</mark> Bangkok, Thailand

Nati

ional Capital Region Emissions Inver	ntory, 2005	

ltem	Area (%)	Mobile (%)	Stationary (%)
PM	90.80	4.23	4.88
SOx	0.05	0.00	57.51
NOx	1.15	7.89	31.57
CO	1.12	71.32	4.92
VOC/TOG	6.88	16.57	1.11
Total (tons per year)	161,631.00	1,544,664.00	14,336,347.00

CO = carbon monoxide, EMB = Environmental Management Bureau, NOx = nitrogen oxide, PM = particulate matter, SOx = sulfur oxide, t = tons, TOG = total organic gases, VOC = volatile organic compound, % = percent Source: EMB, 2006.

• CO is the main pollutant emitted by mobile sources

- Management Bureau (EMB) set the maximum HC emissions from motorcycles and tricycles at 7800 ppm for those operating in urban centers and 10,000 ppm for thos operating in rural areas or outside urban centers
- 2. Fuel Quality leaded gasoline was phased out in December 2000. There was a reduction of aromatics and benzene in gasoline to 35% and 2% by volume, respectively in 2003, and a reduction of sulfur content of automotive diesel fuel to 0.05% by weight in 2004. By July 2007, fuel quality with respect to sulfur limits and the standards for new vehicles will be EURO II compliant

SIAN TRANSPORTATION RESEARCH SOCIETY

26 – 27 August 2<mark>011</mark> Bangkok, Thailand

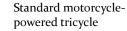
- Fuel Additive registration permanent registration is granted to fuel additives after screening their chemical contents and ensuring that these chemicals do not contribute harmful emissions
- 4. Use of Coco-Methyl Ether (CME) beginning July 2004 government vehicles were required to use diesel fuel blended with 1% CME.
- Compressed Natural Gas (CNG) the Natural Gas Vehicle Program for Public Transport was launched in 2002. A mother-daughter fueling system was set up in Region IV and in Metro Manila to promote the use of CNG by 100 public buses.
- 6. Liquefied Petroleum Gas (LPG) initiatives on the use of LPG as automotive fuel are private sector-led. Most taxis are already running on LPG . The price of conversion is the biggest obstacle for a more widespread use.

The conversion kit for carburator engines costs Php25,000 (\$500) while for a fuel injection engine costs Php50.000 (\$1,000). Also limited number of refilling stations.

7. Ethanol in Fuels - Widespread use of 10% ethanol blended gasoline

8. Anti-Smoke Belching Campaign – In 2004 and 2005, a total of 16,250 and 21,141 diesel vehicles, respectively, were apprehended for smoke emissions

9. Motor Vehicle Inspection System – Aimed at improving the operation and maintenance of vehicles to ensure that their emissions meet national standards


10. Tricycle Improvement Strategy – Motorized tricycle operators and drivers usually have very low incomes and have low capacities to accommodate regulatory requirements, making it difficult for them to maintain their tricycles properly and avoid contributing to the air pollution problem. There are local government initiatives to introduce battery-powered tricycles.

11. Pilot Testing of Eletric Jeepneys - Several cities in the Philippines have experimented with e-jeepneys with support of international funding agencies (ADB) and private institutions/individuals

12. Introduction of BRT Projects – feasibility/pre-feasibility studies of BRT projects in major cities of the Philippines

26 – 27 August 2011 Bangkok, Thailand

Experimentation/field testing of E-tricycles

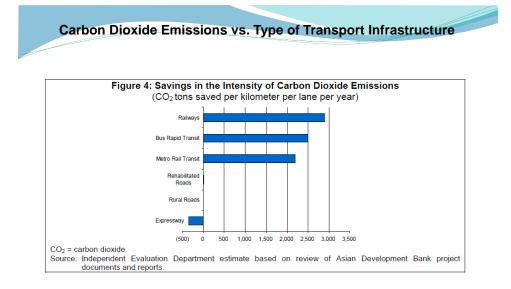
E-tricycles in Taguig City -Capacity is six people including the driver -Being rented to tricycle drivers

E-tricycle

E-tricycles in Mandaluyong City -Capacity is six people including the driver -Being rented to tricycle drivers

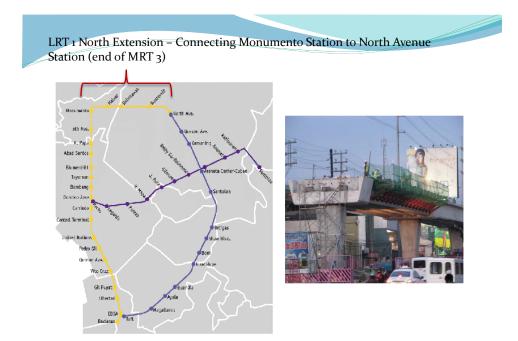
- Experimentation with E-Jeepneys
- Several cities in the Philippines have experimented with e-jeepneys with support of international funding agencies (ADB) and private institutions/individuals
- E-jeepneys in the city of Makati with ADB support

Capacity – 12 including driver



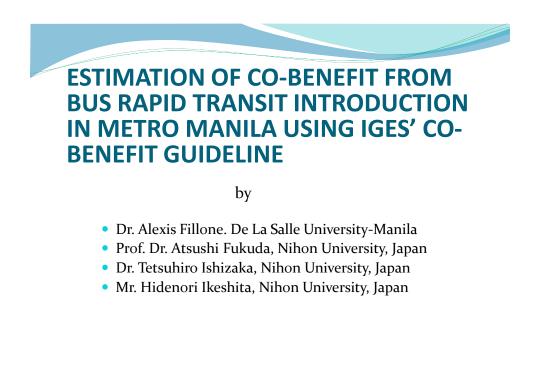
• E-jeepneys (10 units) of Iloilo City provided by a private individual

- to provide free rides to students and old people around Iloilo City
- Capacity 12 including the driver



IAN TRANSPORTATION RESEARCH SOCIETY

• Revival of Philippine National Railways (PNR) operation from Metro Manila to the Bicol Region (*The Bicol Express*)



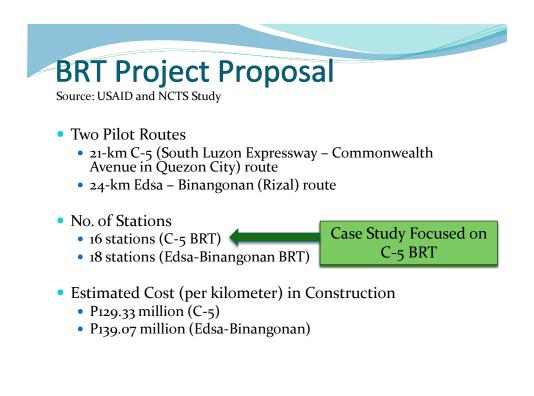
26 – 27 August 2011 Bangkok, Thailand

- Estimated cost of BRT \$350 million
- Pre-feasibility study of an LRT system in Davao City, Mindanao, Philippines
 - ADB commissioned feasibility study
 - Expert estimates the City is still 10-15 years away for an LRT system
 - Another expert recommends a BRT system for Davao City
- Pre-feasibility study of proposed BRT projects in Metro Manila - USAID and National Center for Transportation Studies (NCTS)

SIAN TRANSPORTATION RESEARCH SOCIETY

Potential BRT Projects for Metro Manila

Source: USAID and NCTS Study


- 426-km of Bus Rapid Transit routes
- Estimated Total Cost is P55 Billion
- Typical characteristics/design of proposed BRT lines

- segregated median busways with median stations, preboarding fare collection and fare verification, free transfers between corridors, competitively-bid concessions, highfrequency service and low-station dwell times, clean bus technologies and modal integration

	Corridor/s	LGUs involved	Configuration	Potential BRT Corridors
1a)	Lerma-SM Fairview	Q.C., Manila	Intersects MRT3 at EDSA'; close to LRT2 at Lerma; intersects BRT3	LinetC
1b)	Welcome Rotonda-SM Fairview	Q.C.	Intersects MAT3; intersects BRT3	time 7
1c)	SM North-SM Tala	Q.C., Caloocan	Connects to MRT3; intersects BRT3	time B Line 3B
7)	EDSA	Caloocan, Q.C., Pasig, Makati, Pasay	Complements/ Competes? w/ MRT3; intersects BRT1	Linet
5b)	Bacoor- Dasmarinas	Cavite Province	Connects to LRT1 Extension	Line 3
2)	EDSA- Binangonan	Pasig, Rizal Province (Cainta, Taytay, Angono, Binangonan)	Connects to MRT3; (Intersects ERT3)	Line 54
6)	Santolan- Binangonan	Pasig, Rizal Province	Connects to LRT2	Line4
5a)	Baclaran- Dasmarinas	Paranaque, Las Pinas, Cavite	Connects to LRT1	
4)	Baclaran-Kawit	Paranaque, Las Pinas, Cavite	Connects to LRT1	
3a)	C-5 (SLEX- Commonwealth)	Taguig, Pasig, Makati, Q.C.	Intersects LRT2; intersects BRT1/MRT7	Line 5B
3b)	C5 (SLEX- Elliptical)	Taguig, Makati, Pasig, Q.C.	Intersects LRT2; intersects BRT1	

26 – 27 August 2011 Bangkok, Thailand

IAN TRANSPORTATION RESEARCH SOCIETY

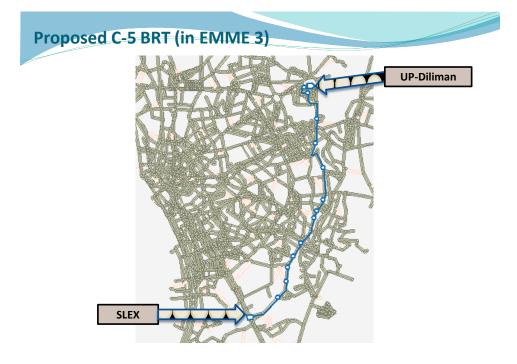


Table 5 Basic Service Characteristics of the Proposed C-5 BRT System

Characteristics	
Capacity	Seating = 100, Full = 200
Headway (min)	3
Average speed (kph)	20
No. of Stops	15
Estimated length (km), one direction	20.59

Articulated bus

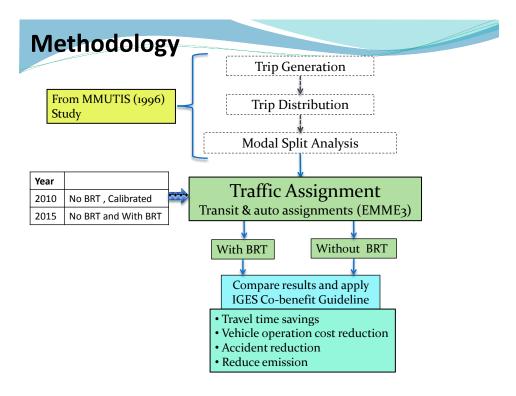
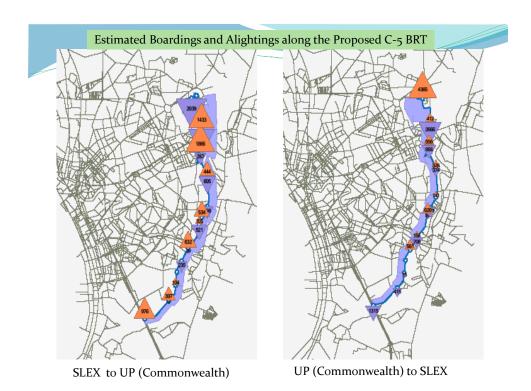


Table 1 Percent of Public and Private Daily Trip Estimates for Metro Manila, MMUTIS, 1996

	Base Year	r Design Periods	
	1996	2010	2015
Percent Public Trips	77.9	69.3	66.2
Percent Private Trips	22.1	30.7	33.8


Table 2 Trip Generation Percent Growth Estimates for Metro Manila, MMUTIS, 1996

	Base Year	Design Periods	
	1996	2010	2015
Percent Growth	1.00	1.62	1.84

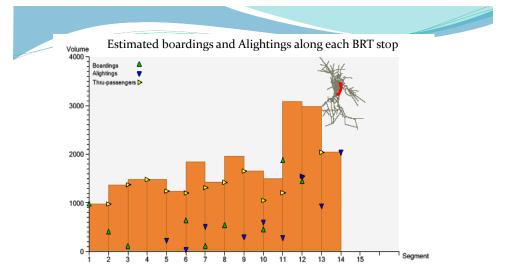

26 – 27 August 2011 Bangkok, Thailand

Table 3 OD Trip Matrix Estimates					
Total Daily OD	Peak Hour OD	Median Hour OD			
Trips	Trips	Trips			
27,021,338	3,391,233	1,153,695			
11,970,490	1,142,033	556,568			
29,317,998	3,679,313	1,251,803			
14,969,010	1,427,984	695,967			
	Total Daily OD Trips 27,021,338 11,970,490 29,317,998	Total Daily OD Peak Hour OD Trips Trips 27,021,338 3,391,233 11,970,490 1,142,033 29,317,998 3,679,313			

Median Hour OD Trips – is the middle value of all hourly person trips in a day (24 hours)

26 – 27 August 2<mark>011</mark> Bangkok, Thailand

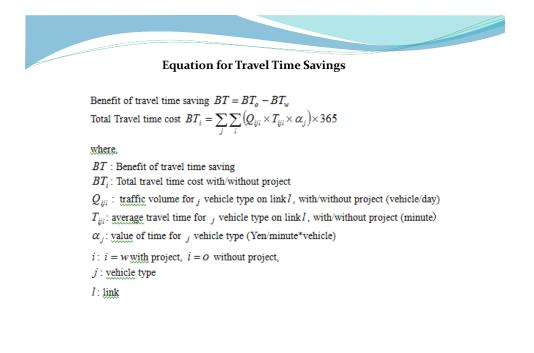


Table 7 Estima	ates of trip characteris	stics in Metro M	lanila
		Daily E	stimate
		Pass-hr	Pass-km
2010 (W/out BRT)	Public	10,570,888.8	177,806,448
2015 (W/out BRT)	Public	11,405,366.4	192,693,048
2015(With BRT)	Public	11,374,452	192,650,016
Reduction 2015(W/out BRT	– With BRT)	30914.4	43032
Reduction rate (W/out BR	T – With BRT)/W/out	0.27%	0.02%
BRT			
		Veh-hr	Veh-km
2010 (No BRT)	Private+Public	2,503,185.6	48,995,448
2015 (No BRT)	Private+Public	3,563,637.6	61,720,968
2015(With BRT)	Private+Public	3,559,233.6	61,683,576
Reduction 2015(W/out BRT	– With BRT)	4404	37392
Reduction rate (W/out BR	T - With BRT)/W/out	0.12%	0.06%
BRT			

AN TRANSPORTATION RESEARCH SOCIETY

Co-Benefit Analysis of the Proposed C-5 BRT Project Using IGES Guideline

- 1. Travel time savings
- 2. Vehicle operating cost reduction
- 3. Traffic accident cost reduction
- 4. Cost of emissions

26 – 27 August 2<mark>011</mark> Bangkok, Thailand

Vehicle Operating Cost Reduction

Benefit of vehicle operating cost reduction $BR = BR_o - BR_w$ Total Travel time cost $BR_i = \sum \sum (Q_{ijl} \times L_l \times \beta_j) \times 365$

where.

BR : Benefit of vehicle operating cost reduction

 BR_i : Total vehicle operating cost with/without project

 Q_{iii} : traffic volume for j vehicle type on link l, with/without project (vehicle/day)

 L_l : Link length of link l (km)

 β_i : value of vehicle operating cost for j vehicle type (Yen/minute*vehicle)

i: i = w with project, i = o without project,

j : <u>vehicle</u> type

l: link

Formulas for calculating number of human accidents (Japan)

Road section	Intersection
$Z_1 = \mathbf{a} X_1$	$Z_2 = bX_2$

Notations:

Z1: number of accidents (per year)

Z2: number of traffic accidents at a major intersection (per year)

X1: vehicle kilometer (1,000 vehicles km/day)

= daily traffic volume (1,000 vehicles/day) × link length (km)

X2: traffic volume multiplied by number of major intersections :

<u>vehicle_intersection</u> (1,000 vehicles intersection/day) = daily traffic volume (1,000 vehicles/day) × number of major intersections

a.b: derived parameters per type of road

26 – 27 August 2<mark>011</mark> Bangkok, Thailand

Estimating Emission Factors (Bangkok Estimates)

Air pollutants = travel distance (veh-km) x emission factor at running speed (g/veh-km)

Table 5-1 Emission factors of passenger car				
Speed	NOx	со	CO ₂	
(km/h)	(g/km)	(g/km)	(g/km)	
7.5	1.161	10.759	319.5	
14.7	1.042	9.139	211.7	
23.4	1.011	9.351	166.2	
33.3	0.908	7.766	150.2	
42.9	0.884	8.893	141.2	
70.0	0.698	4.727	117.3	
90.0	1.058	3.890	128.7	

	Table 5-3 Emission factors of buses				
Speed	Speed NOx CO CO ₂				
(km/h)	(g/km/ton)	(g/km/ton)	(g/km/ton)	(g/km/ton)	
4.966	2.994	2.213	178.160		
9.231	2.162	1.341	128.640		
15.045	1.770	1.039	108.450		
22.831	1.500	1.046	101.180	0.135	
35.465	1.236	0.848	84.380		
60.104	1.041	0.185	58.823		
78.513	1.195	0.332	74.525		

Table 5-4	Emission	factors	of light	duty	rtrucks

Speed (km/h)	NOx (g/km)	CO (g/km)	CO ₂ (g/km)	PM (g/km)
7.830	2.691	1.345	415.713	
14.707	1.869	0.945	308.830	
23.213	1.410	0.739	249.250	
34.033	1.174	0.582	217.810	0.126
46.887	1.054	0.506	204.093	1
70.110	0.976	0.433	162.337	
90.173	1.053	0.374	185.133	1

-	Table 8 The value of time (Php/hr) of urban transport users (MMUTIS, 1996)								
	Design Year								
		1996	2010	2015					
	Private Mode	74.4	101.20	123.50					
	Public Mode	60.0	81.6	99.6					
	Growth Rate (1996 = 1.00)	1.00	1.36	1.66					

Table 10 Estimated user's benefit in Metro Manila given the scenarios

	2010 Present Situation Scenario	2015 Without BRT Scenario	2015 With BRT Scenario	Difference Between (Without BRT – With BRT)
Time Cost (Php/year)	107,056,811,528.06	166,293,592,161.26	165,027,449,933.67	1,266,142,200

TRANSPORTATION RESEARCH SOCIETY

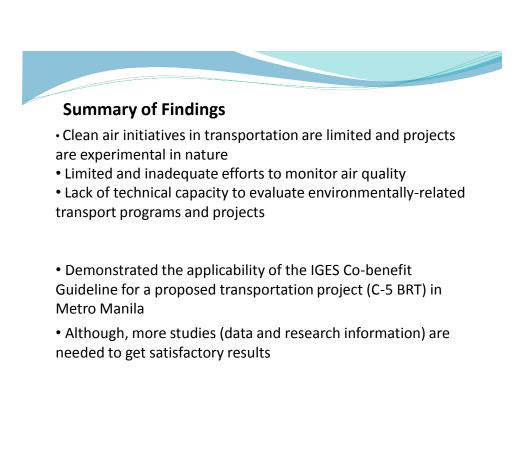
				and private transport mode		UTIS, 1996	
	Speed (km/hr)		ublic		ivate		
	0	Php/km 4.757	Php/hi 25.35		Php/1 16.98		
	10	4.197	40.25		23.68		
	20	3.197	47.70		27.08		
	30	3.730	50.84	2.284	26.90		
	40	3.632	52.13	2.379	25.93		
	50	3.670	52.78	2.342	24.70)	
	60	3.842	53.16	2.352	23.90		
	70	4.103	53.61	2.422	22.39		
	80	4.558	54.50	2.562	21.43		
	90	5.339	56.33	2.805	21.60)	
	Table 5-32 V	hicle Operat	ing Cos	t Estimates for Met	ro Ma	mila	
Item				Vehicle Operating		Vehicle	Operating Cost
				Cost in Php		in Php(A	Annually)
				(24-hr period)			
Japanese Values fr	om Tables 2-2						
2010(w/out BRT)				461,198,152.80)	168,	337,325,700
2015(w/out BRT)				591,025,000.00)	215,	724,125,000
2015(with BRT)				590,629,228.50		215.	579,668,400
					0.0	7%	
	Without -With E	SRT) Without I	BRT)				
Reduction rate (()	DOD DO	in Table 5-31					
Reduction rate ((V Using MMUTIS V	OC Estimates		2010(w/out BRT)			17 (055 046 610
Using MMUTIS V	OC Estimates			48,920,401.68		1/,0	855,946,610
Using MMUTIS V	OC Estimates			61,720,969.44			528,153,840
Using MMUTIS V 2010(w/out BRT)	OC Estimates					22,5	<u> </u>

Table 5-33 Estimated Traffic Accident Costs in Metro Manila, with and without BRT

	2010 Present Situation Scenario	2015 Without BRT Scenario	2015 With BRT Scenario	Difference Between (Without BRT – With BRT)
Loss by Traffic Accident (Php/year)	56,489,004,000	70,494,002,500	70,444,534,500	49,468,000

• less vehicles on the road, hence less accidents

	Table 5-39 Modeling of the Emissions						
Emiss Typ		Modeling period	Representative Hourly Emission Estimates (kgs)	Daily Emission Estimates (kgs)			
		2010 base year 2015 (without BRT) 2015 (with BRT)	6,804.14 8,349.73 8,343.09	163,299.38 200,393.55 200,234.20			
	NOx	Reduction (Without -With BRT)	6.64	159.35			
		Reduction rate ((Without –With BRT)/Without BRT)	0.08 %				
Air		2010 base year 2015 (without BRT) 2015 (with BRT)	41,403.38 54,172.78 53,757.66	993,681.11 1,300,146.77 1,290,183.75			
pollut	ants CO	Reduction (Without -With BRT)	415.12	9,963.02			
		Reduction rate ((Without –With BRT)/Without BRT)	0.77 %				
		2010 base year 2015 (without BRT) 2015 (with BRT)	243.30 279.22 277.53	5,839.22 6,701.20 6,660.62			
	PM	Reduction (Without -With BRT)	1.69	40.58			
		Reduction rate ((Without –With BRT)/Without BRT)	0.61 %				
		2010 base year 2015 (without BRT) 2015 (with BRT)	390,111.04 516,293.86 515,875.73	9,362,665.04 12,391,052.54 12,381,017.52			
Greenh	CO CO	Reduction (Without -With BRT)	418.13	10,035.02			
	-	Reduction rate ((Without -With	0.08 %				
		BRT)/Without BRT)					


Results of Co-Benefit Estimation in Metro Manila (unit : million Php)

	2015 (Without BRT)	2015 (With BRT)	Reduction (Without- With BRT)
Time Cost (PHP/year)	166,293.6	165,027.5	1,266.1
Vehicle Operating Cost (PHP/year)	22,528.2	22,514.5	13.7
Loss by Traffic Accidents (PHP/year)	70,494.0	70,444.5	49.5
NOx (PHP/year)	284,306.1	284,080.0	226.1
CO (PHP/year)	791.7	785.7	6.1
PM (PHP/year)	471,306.2	468,452.2	2,854.1
CO2 (PHP/year)	3,889.6	3,886.4	3.1

USD 1.00= PHP 43.0 *1 t CO2= USD 20.00

RESEARCH SOCIETY

- Country Synthesis Report on Urban Air Quality Management, Philippines, published by the Asian Development Bank (ADB) and Clean Air Initiatives for Asian Cities,(CAI-Asia) Discussion Draft, December 2006
- 2. Estimation of Co-Benefit from Bus Rapid Transit Introduction in Metro Manila using IGE's Co-Benefit Guidelines

26 – 27 August 2011 Bangkok, Thailand

Thank you for listening!

THE END

ASIAN TRANSPORTATION RESEARCH SOCIETY